
www.manaraa.com

Nonlinear Dynamics 38: 221–231, 2004.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Fractional Calculus Description of Non-Linear Viscoelastic
Behaviour of Polymers

NICOLE HEYMANS
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Abstract. In recent decades, constitutive equations for polymers involving fractional calculus have been the object of ever
increasing interest, due to their special suitability for describing self-similarity and memory effects, which are typical of viscoelastic
behaviour in polymers. Thermodynamic validity of these equations can be ensured by obtaining them from analog models
containing spring-pots with positive front factors. Failure of self-similarity in real polymers at short (local) and long (whole
chain) scales has been addressed previously. In the past, interest in fractional differential descriptions of polymer viscoelasticity
has been mainly concerned with linear viscoelasticity, despite the fact that in processing and end use conditions are largely in the
non-linear range. In this paper, extension of fractional calculus models to the non-linear range of viscoelasticity is attempted, by
accounting for stress activation of deformation and strain acceleration of annealing. Calculated stress-strain curves are compared
with experimental results on an amorphous polymer (polycarbonate). The model adequately describes the general trends of yield
and post-yield behaviour, but does not properly describe the gentle approach to yield observed experimentally.
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1. Introduction

Descriptions of polymer viscoelasticity involving fractional differential formulations have been devel-
oped for at least the past half century [1–5] (see the historical survey of Oldham and Spanier [1] for
early work, and Friedrich et al. [2] for more recent developments [2]). Interest in such formulations,
and also concern over their soundness and applicability, has been steadily increasing in recent years.
The simplest fractional differential equation linking stress and strain is:

σ = K
dβ

dtβ
ε or ε = 1

K

d−β

dt−β
σ (1)

This equation describes linear elastic behaviour (Hookean spring) for β = 0 and Newtonian viscosity
(dashpot) for β = 1. For intermediate values of the exponent, it describes viscoelastic behaviour. The
corresponding analog element was called a “spring-pot” by Koeller [6]. K can also be expressed in
the form Eτβ , where E is an elastic modulus and τ is a characteristic time. This form is useful when
spring-pots are associated with elastic elements.

The spring-pot is particularly well suited to a description of polymer viscoelasticity, as can be un-
derstood by examination of Grünwald’s definition of a fractional derivative of order β applied to the
interval [0,t] [1, p. 48]:

dβ f

dtβ
= lim

N→∞

{
(t/N )−β

�(−β)

N−1∑
j=0

�( j − β)

�( j + 1)
f (t − j t/N )

}
(2)
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This expression illustrates several features of fractional derivatives. First, to obtain the present value
of the derivative, the entire history of the function f is required, indicating that fractional derivatives
are particularly well adapted to description of materials with memory. (This is true also of integrals of
real order; integer order derivatives, which are local, are the exception rather than the rule.) Second, the
factor �( j −β)/�( j +1) decreases with increasing j like j−(1+β) indicating fading memory if β > −1.
Third, a spring-pot displays non-exponential relaxation and creep; the solutions to Equation (1) for
constant strain ε0 or constant stress σ0 are

σ = K ε0

�(2 − β)
t−β and ε = σ0

K�(2 + β)
tβ (3)

This illustrates that a spring-pot can describe non-exponential relaxation without the need for a distri-
bution of relaxation times and with a very low number of parameters. Clearly, a spring-pot on its own
displays some rather unphysical behaviour. In particular, it is non-standard, has an infinite instantaneous
modulus, and has a constant phase lag βπ/2 independent of frequency. (The latter can be observed from
the complex modulus of the spring-pot, which is K (iω)β = Kωβ(cos(βπ/2) + i sin(βπ/2))). To de-
scribe real viscoelastic behaviour, a spring-pot must be associated with at least one elastic element, in
other words a fractional derivative term must be associated with at least one elastic term. In common
practice, this is carried out by starting from a phenomenologically acceptable description, and replac-
ing the ordinary derivatives by fractional derivatives. For example, generalization of the single mode
Maxwell model,

σ + τ
dσ

dt
= τ E

dε

dt
(4)

leads to

σ + τα dασ

(dt)α
= Eτβ dβε

(dt)β
(5)

and generalization of the standard solid model (SMM) or Zener model which can be written

σ + τE
dσ

dt
= E

(
ε + τD

dε

dt

)
(6)

leads to

σ + τα
E

dασ

(dt)α
= E

(
ε + τD

β dβε

(dt)β

)
(7)

where α and β are frequently assumed to be different [7–10]. Generalization is sometimes carried out
using a fractional integral formulation [11] under the claim that this avoids problems with divergent
initial conditions. It should be pointed out that once the fractional behaviour is incorporated into a
standard model, divergence at short times or high frequencies is eliminated.

There has been some concern and also some confusion in recent years over thermodynamic validity
of constitutive equations based on fractional derivatives, and also over stability of such formulations.
Friedrich [7] noted that Equation (5) is thermodynamically valid for β ≥ α, and Glöckle and Nonnen-
macher [11] noted that the fractional SMM, Equation (7) is thermodynamically valid only for α = β,
and that when β > α the thermodynamic condition E ′′ > 0 is respected only below some limiting
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frequency. The fractional SMM equation was obtained mathematically by Enelund and Lesieutre [12],
obtaining α = β. The same result was obtained by Heymans [13] and by Haupt et al. [14], by replacing
the dashpot by a spring-pot in the classical Zener model. Rossikhin and Shitikova [15] modelled
damped vibrations using a fractional Maxwell model rather than a fractional SMM, in order to be able
to introduce two independent exponents while complying with the requirements of thermodynamic
compatibility.

However, the question of admissible combinations of terms with different exponents remained open
until proof was given by Beris and Edwards [16] that thermodynamically admissible constitutive equa-
tions are completely equivalent to analog models with all positive coefficients. This means that a
fractional differential or integral constitutive equation is not thermodynamically valid unless it de-
scribes some combination of springs, dashpots and spring-pots. It was pointed out by Heymans [13]
that the fractional Maxwell model with α < β describes the series association of two spring-pots and is
therefore non-standard, and that the generalization of the SMM including two spring-pots with different
exponents β1 and β2 leads to a constitutive equation containing fractional derivatives not of two but of
three orders β1, β2 and β1 − β2, and therefore Equation (7) containing two different exponents cannot
describe thermodynamically valid behaviour.

The question of stability of constitutive equations containing fractional derivatives was raised by
Palade et al. [17], who showed that relaxation of an initial perturbation cannot be expressed in terms
of a combination of exponential relaxations, questioning the usefulness of fractional calculus consti-
tutive equations. However, this arises because of the self-similarity underlying fractional derivative
descriptions, which breaks down on the scale of whole polymer chains. An appropriate treatment of this
breakdown and the corresponding transition to pure flow has been given recently by Heymans [18].

All work recalled above applies to linear viscoelasticity, in the sense that all coefficients in the
constitutive equations are independent of frequency, stress or strain. Few examples exist in the literature
incorporating both fractional calculus and non-linearity [19, 20]. In the present work, existing models
are generalized to account explicitly for effects such as strain softening, stress activation and stress-
accelerated ageing.

2. Model

2.1. THE SPRING-POT AND MODELS FOR LINEAR VISCOELASTICITY

The fundamental building block that is used in this work is the spring-pot, whose complex modulus is

E∗ = K (iω)β (8)

with a corresponding constitutive equation given either by the fractional derivative or fractional integral
form of Equation (1). Strictly speaking, these two forms are not mathematically equivalent for general
initial conditions; however we shall assume here that all calculations are initiated from a state of rest
in which case the fractional derivative and integral forms are equivalent [1]. Although spring-pots have
been obtained from hierarchical arrangements of springs and dashpots, either exactly [21] or as a long
time or low frequency approximation [22, 23], they will be treated here as viscoelastic elements in their
own right. (Note that the tree model proposed by Heymans and Bauwens [21] is misrepresented in [5]).

To describe a viscoelastic transition such as the glass transition, a finite elastic modulus is required,
both above and below the transition. The simplest model capable of describing this behaviour is the
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(a)

(b)

Figure 1. (a) Modified Zener model including spring-pot. (b) Hierarchical nested model describing two viscoelastic transitions.

Zener model, or SSM, Figure 1a, in which the viscous element is replaced by a spring-pot [13].
Schiessel et al. have investigated the Zener model in which all three elements are replaced by spring-
pots [24]. The advantage of this model is that it allows representation of the slight frequency (or
time or temperature) dependence of the glassy and rubbery modulus. The drawback is that the model
is no longer standard. In fact, close examination of experimental data will usually show that fre-
quency dependence of the glassy storage modulus is an indicator of the proximity of a secondary
transition. Multiple viscoelastic transitions have previously been modelled satisfactorily by introduc-
ing an extra spring and spring-pot for each transition, in a nested arrangement shown on Figure 1b,
which ensures hierarchy [13, 18]. Such models lend themselves particularly well to analysis of dy-
namic (DMTA) measurements, and it is well known that in simple cases such as constant stress
(creep) or constant strain (stress relaxation) the time-domain response can be obtained analytically
in terms of a function of the Mittag–Leffler or Fox function family [2, 7, 11, 25]. However, for
more general loading programs or in the presence of non-linear viscoelasticity, a numerical solution is
required.

2.2. SOURCES AND TREATMENT OF NON-LINEARITY

Several sources of non-linear viscoelastic behaviour can arise. In previous work, stress activation of the
deformation process has been taken into account to explain stress relaxation after strain reversal at high
strains [20]. The effect of ageing, both prior to testing and also strain-accelerated ageing during creep,
has been taken into account by allowing for a time-dependent characteristic time [19]. Other effects
which are liable to cause deviations from linear behaviour include strain softening, annealing and non-
linear rubbery elasticity. To treat stress activation, strain softening and annealing, it is appropriate to
express the front factor K of the fractional element in the form Eτβ , where E is the modulus of one or
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a combination of springs in the model. In this work based on the Zener model of Figure 1a, E is taken
equal to the instantaneous modulus E0.

2.2.1. Strain Softening
Strain softening, which has also been called “rejuvenation”, can be expressed via a strain dependent
characteristic time. However, because it has been shown previously that effects of strain softening and
annealing on yield behaviour of polymers can both be expressed by means of the concept of structural
temperature, the same will be carried out here. The structural temperature is a useful concept when
describing properties of non-equilibrium materials such as organic or inorganic glasses, and is defined
as the temperature at which the free energy or free volume of the actual material would be equivalent to
that of a material at equilibrium. Thus, immediately after cooling a sample from above the glass transition
range to a temperature far below it, the structural temperature is equal to the glass transition temperature
Tg because the free energy and specific volume are equivalent to those of the equilibrium material at
Tg . Annealing slightly below Tg produces enthalpy relaxation and volume contraction, resulting in a
decrease in θ . The zero stress characteristic time is hence expressed as

τθ = τ0 exp(− kθ (θ − θ0)) (9)

where τ0 is the characteristic time at the reference structural temperature θ0. No particular significance
is given to the linear form of the argument of the exponential in Equation (10). It simply expresses that
in a sufficiently limited range any expression may be linearized.

An increase in structural temperature can be produced by anelastic or plastic deformation. This effect
is assumed to be instantaneous, and is also assumed as a first approximation to be proportional to
the anelastic component of strain. This contribution to the increment in structural temperature can be
expressed as:

dεθ = kεdεr (10)

where εr is the retarded deformation, i.e. the anelastic or plastic component and kε is a constant. (In
common practice, anelastic deformation is defined as deformation, which can recover after unloading,
on a time scale comparable to the time under load whereas plastic deformation cannot. Although there
is some debate as to whether a single deformation process or two distinct processes are involved, in
this work no difference is made between the two.) The structural temperature is also explicitly time-
dependent: it relaxes towards the test temperature T, at a rate which depends both on the test temperature
and the state of the sample, i.e. on the structural temperature θ itself. This is expressed here through a
first-order annealing equation:

daθ = (T − θ )
dt

τθ

(11)

where subscript a stands for ‘annealing’. This form of annealing equation has been used successfully to
describe both isothermal annealing and change of structural temperature during a temperature sweep.
In this paper, it is assumed that the temperature of the test piece remains constant at room temperature
(23 ◦C).

The two contributions to the change in structural temperature are assumed to be independent, thus
the increment during a time step is dθ = daθ + dεθ .
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2.2.2. Stress Activation
Stress activation can be accounted for by introducing a stress-dependent characteristic time for the
deformation process, e.g. using an Eyring-type equation which can be expressed as:

τ = τθ

σ/σ0

sinh(σ/σ0)
(12)

where σ0 is a stress sensitivity parameter depending on activation volume and test temperature, and
τθ is the zero stress characteristic time, which may depend on the structural temperature θ . Use of a
different time constant for deformation than for the change in structural temperature reflects the fact
that deformation is regarded as a stress-activated flow process whereas enthalpy and volume relaxation
are not stress-activated.

2.2.3. Non-Linear Elasticity
A final source of non-linearity which is likely to appear at high draw ratios is non-linear elasticity. As
discussion here will be restricted to uniaxial extension, the appropriate form of the inverse Langevin
expression for the entropic retractive stress is

σ = E1 λM

9

{
L−1

(
λ

λM

)
− 1

λ3/2
L−1

(
1

λMλ1/2

)}
(13)

where E1 is the low-strain modulus, λ is the draw ratio of the “spring” (i.e. L/L0, where L is current
length and L0 is initial length), L−1 is the inverse Langevin function and λM is the maximum allowable
network draw ratio.

2.2.4. Incorporation of Non-Linearities
Except for this last source of non-linearity, all other effects lead to a dependence of the characteristic time
of the process on stress state and history. How should this be properly accounted for when solving the
constitutive equation? Because complete equivalence has been established between valid constitutive
equations and analog models, it will not be attempted here to solve the complete constitutive equation.
Instead, Equation (1) either in the integral or differential form is integrated numerically at each time
step, giving either the current stress from the strain history, or the current strain from the stress history.
However, it is not immediately clear how these equations should be formulated when K is not constant.
The situation is analogous to that of a non-Newtonian dashpot, where viscosity may depend on stress
or strain-rate. In this case the appropriate expression is

σ = η(t, σ )
dε

dt
or ε =

∫ t

0

σ

η(t, σ )
dt and not ε = 1

η(t)

∫ t

0
σdt (14)

hence in this instance also variation of K, expressed as Eβ
τ , will be accounted for by expressing

Equations (1) as

σ = E
dβ

d(t/τ )β
ε or ε = 1

E
d−β

d(t/τ )−β
σ and not ε = 1

Eτβ

d−β

dt−β
σ (15)

where τ depends on σ , ε and/or θ . Introduction of this form into the SSM leads to an implicit fractional
differential equation to which an analytical solution is not readily available. In this work, numerical
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integration is carried out by treating the viscoelastic element individually, and then obtaining global
stress or strain from the node and branch compatibility conditions.

Two methods of integration have been used. One is based on the Grünwald definition, Equation (2),
where f (t − j t/N ) is replaced by f (t −( j −β/2)t/N ) to improve convergence, and the latter expression
is evaluated by three-point Lagrange interpolation as f j+(β/4)( f j−1− f j+1)+(β2/8)( f j−1−2 f j+ f j+1).
(G2 algorithm, [1], Section 3.4 and 8.2). If τ is not constant, the integration variable is t/τ rather than
t. In principle, this algorithm requires knowledge of the integrand for the whole of previous history,
and also at the present time t and at t + �t (f0 and f−1). However, this difficulty can be circumvented
by extrapolating from earlier times. At each time step, the current value of stress is obtained from
strain history for the viscoelastic element. Then the current strain, and stresses and strains on the other
elements, are obtained from branch and node compatibility conditions.

The second method of integration is based on Boltzmann superposition. The relaxation modulus and
the creep compliance of a viscoelastic element can be expressed as

E(t) = E

�(1 − β)

(
τ

t

)β

and D(t) = 1

E�(1 + β)

(
t

τ

)β

(16)

The current strain can be calculated as

εβ =
n−1∑

1

[(σβ,i − σβ,i−1)/(E�(1 + β))]t∗β

i (17)

where the reduced time is

t∗
i =

n∑
j=i+1

(t j − t j−1)/τ j (18)

Clearly, whichever method of integration is used, stability is superior when obtaining strain from stress
history at short times , and when obtaining stress from strain history at long times.

3. Tensile Behaviour of Polycarbonate

From the standpoint of linear viscoelasticity, polycarbonate is expected to be a particularly simple case,
as there is an exceptionally wide temperature range between the glass transition at about 150 ◦C and the
first secondary (or β) transition centred at −100 ◦C. It is well established that within this temperature
range, the dependence of yield stress on temperature and strain rate is described by the Ree–Eyring
model involving a single deformation process [26, 27]. Therefore, it is expected that a generalized
Zener model containing a single viscoelastic element should be appropriate. The characteristic time
τ of the viscoelastic element is assumed to be stress activated, Equation (9), and also to depend on
the structural temperature θ through Equation (10). The structural temperature itself depends on the
anelastic component of deformation through Equation (11), and relaxes towards the temperature bath
according to the annealing Equation (12). The response of the restraining spring is assumed to follow the
inverse Langevin law, Equation (13). For this simulation, the following parameters were used: E0 = 2.4
GPa (room temperature Young’s modulus), λM = 2.1 (maximum network draw ratio of PC), σ0 = 1.28
MPa at room temperature [27] kθ = 0.83 K−1 [28, 29], θ0 = 400 K corresponding to a well-annealed
sample (annealed to equilibrium at Tg-20 K). The linear viscoelastic relaxed modulus E1 was adjusted
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at 40 MPa to obtain a reasonable yield drop. The value of kε = 200K used here is lower than that
inferred from the work of Othmezouri–Decerf [29]. However, higher values lead to exaggerated strain
softening. The initial time constant τ0 = 1014 s was calculated as η/E0 assuming a viscosity of 1012 Pa.s
at the glass transition (147 ◦C) and an activation energy of approximately 200 kJ/mol corresponding to
low-strain processes in PC [28]. This gives an order of magnitude, but in fact this value has no effect on
the shape of the stress-strain curves, but simply scales the corresponding strain rates. In combination
with E0, this allows the initial (linear viscoelastic) value of K1 to be obtained as E0τ

β1
0 . The exponent

β1 = 0.3 is close to values commonly found from linear viscoelastic behaviour for the low-temperature
side of the α relaxation in amorphous polymers. The exponent should ideally be obtained from dynamic
mechanical spectroscopy using frequency sweeps over as wide a frequency range as possible; this is
essential when β is temperature dependent [18] although in common practice temperature sweeps,
which are less time-consuming, are the rule.

Although the number of parameters might appear to be large, many parameters are obtained from
linear elastic behaviour, or from independent data such as the experimental dependence of yield stress
on strain rate. In fact only kε, kθ and the relaxed modulus E1 were adjusted in this work.

A set of stress-strain curves calculated from this model are shown in Figure 2, using the G2 algo-
rithm described above. Also shown are the corresponding curves representing the change in structural
temperature during deformation. It should be pointed out that the model represents intrinsic material
behaviour, and that localization of deformation such as necking is not accounted for.

A number of features that are characteristic of mechanical behaviour of ductile glassy polymers are
well represented in the model, in particular the dependence of upper yield stress on strain rate and the
slighter dependence of lower yield stress; the dependence of yield stress on the structural state; and
the upward curvature of the post-yield rise in stress. However, it was expected that the progressive
approach towards yield would be well represented by a model containing a fractional element, since
this would be expected to spread out the response in time. This is not the case: practically no pre-yield
anelastic deformation appears in the model behaviour, and the transition from linear elastic to plastic
behaviour occurs abruptly over a very narrow stress span. This is clearly visible in Figure 3, which gives
a comparison of the simulation with an experimental stress-strain curve in the pre-yield region.

Figure 2. Calculated stress-strain curves (full lines, left scale) and change in structural temperature (dashed lines, right scale) for
PC at room temperature. Strain rates (top to bottom): 0.5, 0.05, 0.005, 0.0005, 0.00005 s−1.
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Figure 3. Comparison of model (full curve from Figure 2, 0.5 s−1) with experimental behaviour (dashed curve) of PC at room
temperature.

Figure 4. Model behaviour at 0.5 s−1 Lines: stress-strain curves, left scale; symbols: structural temperature, right scale. Full curve,
black circles: as Figure 2; dotted curve, empty circles: kε = 400 K; dashed curve, black triangles: kθ = 0.7 K−1; dashed-dotted
curve, empty triangles: kθ = 0.7 K−1, θ0 = 420 K.

Figure 4 shows the effect of various parameters on model behaviour. Increasing kε from 200 to 400 K
decreases the yield stress slightly, and leads to a sharper and stronger yield drop. The structural temper-
ature increases more rapidly, and the final structural temperature is marginally higher. Decreasing kθ to
0.7 K−1 leads to a more gradual yield drop and a higher final structural temperature, since the condition
for a stationary structural temperature is exact compensation of the strain-induced increase, Equation
(11), by the relaxation-induced decrease, Equation (12). Increasing the initial structural temperature
to 420 K, corresponding to a rapidly quenched sample, leads to a strong decrease of the upper yield
stress, and a slighter change in the lower yield stress as observed experimentally. However, no set of
parameters is able to produce the gradual approach to yield observed in the real material.
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A similar problem has been encountered previously in many instances when attempting a unified
description of various aspects of polymer behaviour. It has been shown that the gradual transition in
yield behaviour at the onset of a secondary viscoelastic transition can only be modelled adequately if
a distribution of activation energies is taken into account [30]. It has also been noted that activation
energies for yield, annealing and ageing are different, and although this has been interpreted as an
indication that these three phenomena involve different processes [28, 29], it has also been suggested
that a single process is involved, but that one is looking at a different experimental window and hence
a different subset of activation energies in the different kinds of experiments [31]. This matter is as yet
unresolved. Also, the possibility that the linearised forms of the strain-softening effect, Equations (10)
and (11), and the annealing Equation (12) are an oversimplification, cannot be ruled out.

A similar kind of discrepancy was observed when using a nested model as in Figure 1b to describe
relaxation in polyethylene after strain reversal [20]. It was found that the effect of strain reversal was
much stronger in the simulations than in the real material, implying that short-term relaxation was much
stronger than in the model. Although it was expected that use of fractional models would adequately
represent the spread in relaxation and deformation response that is observed in viscoelastic materials in
the non-linear range, it turns out that this is not the case, and that anelastic behaviour must be accounted
for separately. This could be carried out by taking account of a distribution of activation parameters.
Specifically, any distribution of activation energies would lead to a distribution of time constants in
the glassy state, even under the assumption of a single time constant in the melt. Such a distribution
would also be linked with a distribution of activation volumes, hence of σ0. Future work will attempt
to introduce a treatment of these distributions into fractional order descriptions of polymer mechanical
behaviour.

4. Conclusions

A simple standard solid model containing a spring-pot or fractional order element has been used in this
work in an attempt to reproduce the tensile behaviour of a polymer in what was hoped to be a simple
case, that of polycarbonate at room temperature, i.e. far from all viscoelastic transitions. The capability
of such models to describe behaviour in the non-linear range of viscoelasticity and plasticity has been
demonstrated. Although the general features of tensile behaviour are correctly reproduced, such as the
presence of a yield drop and the change in yield behaviour with thermomechanical history, the shape of
the stress-strain curve in the pre-yield region is not correctly reproduced. Future work will concentrate
on incorporating an adequate treatment of anelasticity into the model, for instance by accounting for a
distribution of activation energies and volumes of deformation processes.
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PMMA and PTFE fitting by fractional Maxwell model’, Polymer Testing 21, 2001, 325–331.

10. Wenchang, T., Wenxiao, P., and Mingyu, X., ‘A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell
model between two parallel plates’, International Journal of Non-Linear Mechanics 38, 2003, 645–650.
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